

1. ABRASION RESISTANCE TEST

Product Test Laboratory

Cutlass Rubber Bearing

AR®1 Bearing

Test Conditions	
Speed:	900 RPM
Load:	25 psi (0,172 MPa)
	bearing load
Shaft:	300 SS shaft
Media:	95% water,
	5% silica sand
Temperature:	all materials: 70°F (21°C)
	AR™HT at 250°F (121°C)
	in ethylene glycol
Duration.	8 hour run time

300 series SS Shaft

300 series SS Shaft

TEST RESULTS – AT A GLANCE

AR® composites are less damaging to the shaft or shaft sleeve in abrasive media over traditional bearing materials such as cutlass rubber.

The chart shows percent weight change (loss) per hour of Greene, Tweed's AR materials compared to traditional materials. As shown in the data, Greene, Tweed's ARHT and AR1 are less damaging to the shaft or shaft sleeve in abrasive media than traditional bearing materials.

All trademarks are property of their respective owners

08/07-GT DS-US-PP-003

2006, Greene, Tweed all rights

Statements and recommendations in this publication are based on our experience and knowledge of typical applications of this product and shall not constitute a guarantee of performance nor modify or alter our standard warranty applicable to such products.

2. DRY RUN TESTING

Test Conditions

Test fixture:	Vertical bearing test rig
Speed:	3600 RPM
Load:	10.2 psi (0,07 MPa) radial load
Shaft:	316 SS shaft, surface finish of approx. 50 R _a
Media:	Air
Temperature:	Room temperature
Duration:	2 minutes, 2 runs per material (standard .004"/0.1 mm and
	increased .008"/0.2 mm clearance)
Parameters:	all bearings grooved (since utilized for abrasive conditions)

TEST RESULTS - AT A GLANCE

AR®1/ AR®HT:	No change in cross section, inner diameter, or weight loss. Bearings and rod look practically new.
Thordon SXL:	Grooves completely filled with excess material. If emptied weight loss values would clearly increase >1%.
Cutlass Rubber:	Only for 20 seconds running

AR bearing materials proved to have good dry run capability. They resist abrasion from suspended solids and the embedding of sharp abrasive particles of excess material. Grooves remain unaffected and support cooling effect.

Pictures below show bearings and rods after two minutes of dry testing @ 1666 RPM.

ARHT

Excellent condition of bearing/rod

Duramax Cutless Rubber

Severe wear; after 20 sec excessive vibration, black smoke & motor rpm dropped drastically.

AR1

Unaffected

Thordon SXL

Worn cross section & inner diameter; grooves completely filled with excess material; slivers of material extruding from the grooves.

All trademarks are property of their respective owners. 08/07-GT DS-US-PP-003

2006, Greene, Tweed all rights reserved